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Abstract
Eigenvalues and localization of eigenvectors of non-Hermitian tridiagonal
periodic random matrices are studied by means of the Hatano–Nelson
deformation. The support of the spectrum undergoes a disk to annulus
transition, with inner radius measured by the complex Thouless formula. The
inner bounding circle and the annular halo are structures that correspond to the
two arcs and wings observed by Hatano and Nelson in deformed Hermitian
models, and are explained in terms of localization of eigenstates via a spectral
duality and the argument principle. This disk-annulus transition is reminiscent
of Feinberg and Zee’s transition observed in full complex random matrices.

PACS numbers: 02.10.Yn, 72.15.Rn
Mathematics Subject Classification: 15A52, 37H15, 15A90

1. Introduction

Hermitian tridiagonal random matrices are studied in great detail, and many results are
available on spectral properties such as density, statistics and localization of eigenvectors.
They appear in several models of physics, as Dyson’s random chains, Anderson’s models for
transport in disordered potentials, Ising spin models with random couplings and β-ensembles
of tridiagonal random matrices. Hatano and Nelson [1] introduced a beautiful method to study
the localization of eigenvectors by forcing an asymmetry of upper and lower nondiagonal
elements. Then the eigenvalues are driven from the real axis to curves in the complex plane,
in patterns that measure the localization length of the corresponding eigenvectors.

Tridiagonal random matrices that are non-Hermitian from the start are less studied. They
model systems with asymmetric hopping amplitudes [2–5], describe the properties of 1D
random walks [6, 7] or the evolution of population biology [8]. Their spectrum is complex.
In this work, we study how the Hatano–Nelson deformation modifies it, the occurrence of
spectral curves and the connection with the localization of eigenvectors.
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Figure 1. Eigenvalues in the complex plane of a single non-Hermitian tridiagonal matrix of size
n = 800. The same matrix entries {ak, bk, ck} are used, with ξ = 0 and ϕ = 0 (left), and ξ = 0.5
and ϕ = 0 (right). Note that the eigenvalues out of the circle have the same positions in both the
cases.

Let us then consider complex tridiagonal matrices with corners

M =

⎡
⎢⎢⎢⎢⎣

a1 b1 c1

c2
. . .

. . .

. . .
. . . bn−1

bn cn an

⎤
⎥⎥⎥⎥⎦ , (1)

where all matrix elements are independent and identically distributed (i.i.d.) complex random
variables. Here, we use the uniform distribution in the unitary disk of the complex plane.
This implies that the eigenvalue density of the ensemble is only a function of the modulus of
the eigenvalue. The eigenvalues of a sample matrix of size n = 800 are shown in figure 1
(left).

We next consider two deformations of the matrix M, by a complex parameter z = eξ+iϕ :

M(zn) =

⎡
⎢⎢⎢⎢⎣

a1 b1 znc1

c2
. . .

. . .

. . .
. . . bn−1

bn/z
n cn an

⎤
⎥⎥⎥⎥⎦ , (2)

Mb(z) =

⎡
⎢⎢⎢⎢⎣

a1 b1/z zc1

zc2
. . .

. . .

. . .
. . . bn−1/z

bn/z zcn an

⎤
⎥⎥⎥⎥⎦ . (3)

The two matrices are similar, Mb(z) = SM(zn)S−1, through a diagonal matrix with entries
Sii = zi . The balanced matrix Mb(z) is more convenient for numerical work. Since the
matrices share the same set of eigenvalues, a rotation of z by 2π/n does not change the
eigenvalues of Mb(z). The eigenvalues of Mb(z) are shown in figure 1 (right). The distribution
looks remarkable: a ‘circle’ centered in the origin bounds an outer annular halo where the
eigenvalues appear in the same positions as those in the left figure. The inner region is void:
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Figure 2. The same random matrix entries as in figure 1, with ξ = 0.7 and ϕ = 0 (left), ξ = 1
and ϕ = 0 (right).
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Figure 3. Motion in the complex plane of the eigenvalues of a single non-Hermitian tridiagonal
matrix of size n = 100 as the phase ϕ is changed in half of its range. The same matrix entries are
used, with ξ = 0.5 (left) and ξ = 1 (right). Eigenvalues not belonging to the loop are seen to be
fixed, corresponding to localized states. The loop becomes closed if the whole angular range is
evaluated.

all the eigenvalues that were there before deformation (ξ = 0) have moved to the boundary
circle. As |z| becomes larger, see figure 2, the circle enlarges as well, but the eigenvalues in
the annular halo do not apparently move, until they are swept by the circle. For large ξ only
the circle remains. This is not surprising: in the limit of large |z| the matrix Mb(z) simplifies
to bidiagonal. The eigenvalue equation can be solved explicitly and gives En = znb1 · · · bn.
Then the eigenvalues Ek = |z| e〈ln |b|〉 exp i(θ + 2πk/n) are equally spaced and lie on a circle
of radius r (θ is an overall phase) such that log r = ξ + 〈log |b|〉.

Eigenvalues on the circle and in the halo respond differently to the phase ϕ = arg z. As
ϕ sweeps the Brillouin zone from 0 to 2π/n, only the eigenvalues sitting on the circle move
(and remain therein), while the outer ones do not have measurable changes at all. This is
illustrated in figure 3, which also shows that an eigenvalue on the circle moves to the position
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Figure 4. Eigenvalues in the complex plane of three different samples of size n = 400 (left) and
n = 1200 (right). All matrices with ξ = 0.5 and ϕ = 0.

of a neighboring one as ϕ is increased by 2π/n. By increasing the size n of the matrices, the
‘circle’ is seen to become independent of the sample and more regular (figure 4).

We obtained the same qualitative picture by replacing the uniform distribution of matrix
elements in the unit disk with that in the unit square. Hereafter we limit ourselves to the disk
because of its advantages due to explicit rotational invariance.

The phenomenon described has two interesting connections.

(1) It is analogous to what Hatano and Nelson [1] discovered for random tridiagonal Hermitian
matrices (ak real, ck+1 = b∗

k ) where the undeformed eigenvalues (ξ = 0) are real. The
deformation forces them to move into the complex plane and distribute themselves along a
two-arc loop, with possible external wings of eigenvalues in the real axis (figure 5) that do
not move, within numerical precision. The two-arc loop and wings of the Hermitian model
correspond to the circle and annular halo of the non-Hermitian model discussed here.

(2) It recalls the disk-annulus transition of the spectral support of non-Hermitian models of full
random matrices X with probability density p(X) ∝ exp[−ntrV (XX†)] (V is a polynomial).
For such ensembles, Feinberg et al [9] proved a single ring theorem. It states that the support
of the spectrum can only be a disk or an annulus.

In sections 2 and 3, we study the spectral density of the undeformed ensemble and the
localization of eigenvectors, measured by the Lyapunov exponent or by the variance. In
section 4, we explain the observed spectral features of the deformed ensemble by means of
the argument principle of complex analysis and a spectral duality between the eigenvalues of
M(zn) and those of the transfer matrix.

2. The spectrum of M

Since the matrix entries of M are chosen to be uniformly distributed in the unit complex disk,
the average eigenvalue density of the ensemble, ρ0(E) = 〈

1
n

∑
i δ2(E − Ei)

〉
, depends on |E|.
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Figure 5. Eigenvalues of a single Hatano–Nelson tridiagonal matrix of size n = 600, with ξ = 1,
bk = ck = 1 and random numbers ak uniformly distributed in (−3.5, 3.5). They belong to two
arcs or two wings in the real axis, which are the residuate of the undeformed spectrum.
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Figure 6. Eigenvalue density ρ0(|E|) of the undeformed ensemble (matrix size n = 1000, 100
samples). The dark line is obtained by smoothing the histogram data on local windows of 10 bins
(out of 300). The plateau is fitted by the value 0.193(2).

(This figure is in colour only in the electronic version)

The eigenvalue equation

ck uk−1 + ak uk + bk uk+1 = E uk (4)

written for the component uk with highest absolute value implies the inequality |E| �
|ak| + |bk| + |ck| � 3. Thus the disk that supports the density has a radius not exceeding
3; the numerical evidence is that it has length 2.

We diagonalized 100 matrices of size n = 1000 to obtain numerically the density
of eigenvalues ρ0(|E|) shown in figure 6. The lowest moments μk = 〈

1
n

∑
i |Ei |k

〉 =
2π

∫ 2
0 dxxk+1ρ0(x) are also evaluated: μ1 = 0.9107(12), μ2 = 0.9678(22), μ3 = 1.1327(36)

and μ4 = 1.4204(59).
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3. The Lyapunov exponent

The numerical evaluation of the eigenvectors of M shows that they are strongly localized for all
eigenvalues; indeed, for large matrix size, they decay exponentially (Anderson localization).
The rate of decay is measured by the Lyapunov exponent, an asymptotic property of transfer
matrices.

The transfer matrix of a realization M is the product of 2 × 2 random matrices:

t (E) =
n∏

k=1

[
b−1

k (E − ak) −b−1
k ck

1 0

]
. (5)

Its eigenvalues can be written as zn
± = en(ξ±+iϕ±). For large n the exponents ξ±(E) become

opposite: ξ+ + ξ− = 1
n

log |det t (E)| = 1
n

∑n
k=1(log |ck| − log |bk|) → 0.

According to the theory of random matrix products, for large n the positive exponent ξ+

becomes independent of n and the realization of randomness, and converges to the Lyapunov
exponent of the matrix ensemble. The Lyapunov exponent can be evaluated by an extension
of Thouless formula to non-Hermitian matrices [3, 10],

γ (E) =
∫

d2E′ρ0(E
′) log |E − E′| − 〈log |b|〉, (6)

where ρ0 is the eigenvalue density of the ensemble of matrices M. Note that for complex
spectra, the equation for γ implies the Poisson equation ∇2γ (E) = 2πρ0(E). Therefore,
γ (E) can be understood as the electrostatic potential generated by a charge distribution in the
plane with density ρ0(E).

For a distribution of matrix entries that is uniform in the unit disk, it is 〈log |b|〉 = −1/2
and ρ0 is rotation invariant. Then the integral can be simplified:

γ (|E|) = log |E|N0(|E|) + 2π

∫ ∞

|E|
dE′E′ρ0(E

′) log E′ + 1/2. (7)

The integral
∫ 2π

0 log |r − r ′ eiϕ | dϕ = 2π log max(r, r ′) was used. N0(|E|) is the fraction of
the spectrum inside the disk of radius |E|. For |E| larger than the spectral radius it is

γ (|E|) = log(|E|) + 1/2, |E| � 2. (8)

The Lyapunov exponent is an increasing function of |E|. Its numerical evaluation is
shown in figure 7.

We checked numerically the exponential decay of eigenvectors with a rate given by
γ (|E|). If 
u is an eigenvector of M, with components {uk}nk=1, the numbers |uk|2 provide the
probability distribution for the position of a particle in the lattice 1 . . . n. Since the eigenvectors
are peaked on small intervals, the variance of position has a clear meaning and we chose it to
measure the localization:

var[
u] =
(

n∑
k=1

|uk|2(k − k)2

)1/2

, (9)

where k = ∑
k k|uk|2 is the mean position of the particle.

We tested other measures of localization, such as the inverse participation ratio and the
Shannon entropy. In all cases we found the same qualitative picture of the localized regime of
our concern.

For an ideal state 
v that is exponentially localized, |vk|2 = (tanh γ ) e−2γ |k| (γ n � 1),
the variance is var[
v] = sinh(1/γ ). We use the same relation to compute a rate γa from the
numerically evaluated variance of an eigenstate 
ua . In figure 8, we plot the numerical pairs
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Figure 7. The Lyapunov exponent γ (|E|) evaluated numerically (100 matrices of size n = 1000).
The two curves are a quadratic fit near the origin, 0.2914(1) + 0.309(0)|E|2, and the exact analytic
expression lg(|E|) + 1/2 of γ for |E| > 2. The fit near the origin is consistent with the value found
for ρ0(0) (via the Poisson equation).
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Figure 8. Pairs (|Ea |, γa), where Ea are eigenvalues and γa are rates of exponential localization,
for the eigenvectors of a matrix M of size n = 800 (ξ = 0). The continuous line is the Lyapunov
exponent γ (|E|).

(|Ea|, γa) for the eigenvalues and eigenvectors of a single matrix M of size n = 800, together
with the Lyapunov exponent γ (|E|), given by Thouless formula (7). The numerical data are
consistent with the picture of exponential localization of eigenvectors.

4. Hole, halo and localization

As the parameter ξ is switched on, it modifies the corners of the matrix M, i.e. the boundary
conditions in (4). In the transition from M to M(zn), one expects that the eigenvalues of
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Figure 9. Variance of eigenvectors (z-axis) and corresponding eigenvalues (x = ReE, y = ImE)
of a random matrix Mb(eξ ) of size n = 800 and ξ = log 2. The radius of the hole is approximately
1.16.

enough localized eigenstates do not change appreciably. An eigenstate 
u = {uk} of M(zn)

corresponds to an eigenstate S
u of Mb(z), with components zkuk . If |uk| ≈ e−γ |k| for large k,
the factor ekξ delocalizes it if γ < ξ . This simple argument by Hatano and Nelson indicates
a threshold value γ (|E|) = ξ at which eigenvalues must be drastically influenced by the
deformation.

In figure 9, we plot the variances (z-axis) of the eigenvectors of a matrix Mb(z = 2) of
size n = 800, and the corresponding complex eigenvalues (horizontal plane). The boundary
of the circular hole is populated by the eigenvectors which are delocalized.

The existence of an empty disk and a halo of fixed eigenvalues for the deformed ensemble
thus reflects the localization properties of the eigenvectors of M as a function of |E|, i.e. the
function γ (|E|).

Proposition: in the large n limit, Mb(eξ+iϕ) has no eigenvalues in the disk of radius r, where

γ (r) = ξ. (10)

Proof: The hole in the spectrum of Mb(z) can be understood via the argument principle of
complex analysis: the number of zeros of the analytic function f (E) = det[E−Mb(z)] inside
a disk of radius r is equal to the variation of argf (E)/2π along the contour of the disk.

The function f (E) is related to the eigenvalues zn
±(E) of the transfer matrix t (E) by a

duality identity [11, 12]:

det[E − Mb(z)] = − 1

zn
(b1 · · · bn) det[t (E) − zn]. (11)

Then

arg det[E − Mb(e
ξ+iϕ)] = const + arg[en(ξ+−ξ)+in(ϕ+−ϕ) − 1] + arg[en(ξ−−ξ)+i(ϕ−−ϕ) − 1].

Let us fix ξ > 0 and take the large n limit. Then, ξ+ > 0 and ξ− < 0; arg[en(ξ+−ξ)+in(ϕ+−ϕ) − 1]
equals n(ϕ+ − ϕ) if ξ+ > ξ , and π if ξ > ξ+; arg[en(ξ−−ξ)+in(ϕ−ϕ) − 1] = π always. We also
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identify ξ+(E) with the Lyapunov exponent γ (|E|). The variation of argf (E)/2π along a
circumference of radius r is zero if ξ > γ (r). �

Since γ (0) is nonzero, there is a threshold value ξmin ≈ 0.291 below which no hole opens
in the spectral support.

5. Conclusions

The Hatano–Nelson deformation opens a hole in the spectrum of non-Hermitian tridiagonal
random matrices with i.i.d. matrix elements. The eigenvalues that are swept to the boundary
of the hole correspond to states that are no longer Anderson localized. This is explained in
terms of a spectral duality, stability of the Lyapunov exponent and the argument principle.

Tridiagonal matrices with different strengths of randomness in the three diagonals would
also show similar spectral features.
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